e
Java Module & Ahead Of Time Compilation
Battle of Efficiency

Luram Archanjo

e Software Engineer at Sensedia
e MBA in Java projects

e Java and Microservice enthusiastic

e Microservices

Java

head Of Time Compilation (AOT)

ust 'n Time Compilation (JIT)

Native Image

e Questions

Moving to Microservices

Monolith Microservices

) —

Feature C

Microservice

Scalability

Monolith Scalability Microservices Scalability

.
S %

Microservice Microservice Microservice
Feature A Feature B Feature C

Our resources are finite!

How to use less resources
using Java Language?

Java Module

Java Module

Modularity adds a higher level of aggregation above packages. The key new language element is
the module - a uniquely named, reusable group of related packages, as well as resources and a
module descriptor specifying.

boooaod Field
Method

According to JSR 376, the key goals of modularizing the Java SE platform are:

Reliable Configuration
Strong Encapsulation
Greater Platform Integrity
Scalable Java Platform

Source: &

https://jcp.org/en/jsr/detail?id=376
https://www.oracle.com/corporate/features/understanding-java-9-modules.html

Java Module

JDK Modules

java.se java.scripting

java.sgl.rowset java.xml

java.base

java.naming

java.rmi

java.desktop

module-info.java

module myApp {
exports com.tdc.poa;
requires java.base;
requires java.sql;
requires java.logging;
requires java.naming;
requires java.compiler;

}

Application
&
Custom JRE

java.naming

What are the results of using
Java Modules?

What are the results of using Java Modules?

Heap | Metaspace

X
Size: 10.485.792B Used: 3.109.912B
Max: 20.971.552 B
10 MB
8 MB:
6 MB
4MB
2 MB
0 MB:
12:35:36 12:35:38 12:35:40 12:35:42 12:35:44 12:35:46 12:35:48 12:35:50 12:35:56
ap size M Used heap
Classes x || Threads x
Total loaded: 2.241 Shared loaded: 0 Live: 12 Daemon: 11
Total unloaded: 0 Shared unloaded: 0 Live peak: 12 Total started: 12
12
2.000
10
1.500 8
6
1.000
4
500
2
0 0
12:35:35 12:35:40 12:35:45 12:35:50 12:35:55 12:35:35 12:35:40 12:35:45 12:35:50 12:35:55
M@ Total loaded classes M Shared loaded classes

@ Live threads B Daemon threads

What are the results of using Java Modules?

{ Heap | Metaspace

Size: 10.485.792B
Max: 20.971.552 B

Used: 2.097.152B

10 MB
8 MB.
6MB
4MB
2Mm8B
oMB
12:51:33 12:51:34 12:51:35 12:51:36 12:51:37 12:51:38 12:51:39 12:51:40 12:51:41 12:51:42 12:51:46 12:51:48
size @ Used heap
Classes x | | Threads x
Total loaded: 975 Shared loaded: 0 Live: 6
Total unloaded: 0 Shared unloaded: 0 Live peak: 6
1.000 6
800 5
4
600
3
12:51:46
400 Live threads 6
2 Daemon threads 5
200
1
0 0
12:51:34 12:51:36 12:51:38 12:51:40 12:51:42 12:51:44 12:51:46 12:51:48 12:51:34 12:51:36 12:51:38 12:51:40 12:51:42 12:51:44 12:51:46 12:51:48
@ Total loaded classes M Shared loaded classes @ Live threads B Daemon threads

Less classes, functions and
dependencies are not
enough!

«

The villain of Java's
resources is the Reflection

What are the results of using Reflection?

Spring is an amazing technical achievement and does so many things, but does them at

Reads the byte code of every bean it finds.
Synthesizes new annotations for each annotation on each bean method, constructor, field etc.

to support Annotation metadata.
Builds Reflective Metadata for each bean for every method, constructor, field etc.

Lines of Code /

-

Is it possible to have the
same productivity but
without Reflection?

Yes, with Ahead Of Time
(AOT) Compilation

Ahead Of Time (AOT) Compilation

Ahead-of-time compilation (AOT compilation) is the
language, or an intermediate representation such as Java bytecode, into a SO

that the resulting binary file can

IL, Google Dagger 2

L]
@ g, e
.
L]

.
«* ®
® e 00

MICRONAUT ”
la"tl

QUARKUS

What are the results of using
Ahead Of Time (AOT)
Compilation?

What are the results of using Ahead Of Time (AOT) Compilation?

Data from website:
e Startup time around

e All Dependency Injection, AOP and Proxy generation happens
at

e Can be run with as little as Max Heap.

What are the results of using Ahead Of Time (AOT) Compilation?

Data from website:
e Startup time around

e All Dependency Injection, AOP and Proxy generation happens
at

e Can be run with as little as Max Heap.

la“rl

QUARKUS

Is it possible to
improve more?

Yes, with Just In Time (JIT)
Compilation and

VM.

is a universal virtual machine for running applications written in JavaScript, Python, Ruby,
R, JVM-based languages like Java, Scala, Groovy, Kotlin, Clojure, and LLVM-based languages such
as C and C++
e Native Image

e Embeddable

For existing Java applications, GraalVM can provide benefits by running them faster, providing a
faster Just In Time (JIT) Compilation

Source:

https://www.graalvm.org/docs/why-graal/

VIV Just In Time (JIT) Compilation

ust 'n Time (JIT) compilation is a way of executing computer code that involves
. It runs complex optimizations to generate

System.out.printin(
"Hello World");

—

Byte code
- ‘ \°

6a 61 76 61 20 c3
a9 20 66 6f 64 61

&)
—

01110110
01100001
00100000
11101001

00100000
01100110
01101111

01100100
01100001

What are the results of using
Just In Time (JIT)
Compilation?

Open)DK

Count
Total
Slowest
Fastest
Average

Requests / sec

4589
60.00 s
3.79s
5.85ms
130.43 ms
76.48

—>

What are the results of using Just In Time (JIT) Compilation?

Count
Total
Slowest
Fastest
Average

Requests [/ sec

5815
60.00 s
2.36s
2.15ms
102.87 ms
96.91

What are the results of using Just In Time (JIT) Compilation?

Startup Speed Peak Throughput

AOT

— - Reduced
Max Latency

Low Memory
Footprint

v
Small Packaging

Is it possible to
improve more?

Yes, with Native Image and

VM.

Native Image

GraalVM Native Image, currently available as an

works well when:
e Little or no runtime reflection is used.

e Limited or no dynamic classloading.

Source:

https://www.graalvm.org/docs/why-graal/

What are the results of using
Native Image?

What are the results of using Native Image?

Java Microservice: Memory Footprint ~5x lower

Helidon

106 MB

Micronaut

180 MB

17 MB
Quarkus -

121 MB

I l)lll { A‘l‘l 1 ‘ I‘I‘A L | l‘l{k,l | J I — - F—t ‘
0 MB 20MB 40MB 60MB 80MB 100MB 120MB 140MB 160 MB 180 MB 200 MB

m GraalVM 19.0 Native Image GraalVM 19.0 HotSpot Mode

Source:

https://www.graalvm.org/docs/why-graal/

What are the results of using Native Image?

Java Microservice: Startup Time ~50x faster
Helidon I 3 ms
988 ms
Micronaut I 37 ms
2101 ms

I 16 ms

Quarkus 910 ms

L " " s ! s } PE— . . } | . . L . |
Oms 500 ms 1000 ms 1500 ms 2000 ms 2500 ms
m GraalVM 19.0 Native Image m GraalVM 19.0 HotSpot Mode

Source:

https://www.graalvm.org/docs/why-graal/

When to start using Java
Module, AOT, JIT or Native
Image?

When to start using Java Module, JIT or AOT?

New Application

Java Module Java Module
e Java?9 e Java9
Just In Time Compilation Just In Time Compilation (@
e GraalVM O e GraalVM
Ahead Of Time Compilation Q
e Quarkus o
e Micronaut L
Native Image -
e GraalVM —_—

e Early Adopter Technology

Java is dying?

Thanks a million!
Questions?

= /larchanjo

in /luram-archanjo

