
Java Module & Ahead Of Time Compilation
Battle of Efficiency

Luram Archanjo



Who am I?

● Software Engineer at Sensedia

● MBA in Java projects

● Java and Microservice enthusiastic



Agenda

● Microservices

● Java Module

● Ahead Of Time Compilation (AOT)

● Just In Time Compilation (JIT)

● Native Image

● Questions



Moving to Microservices

Feature A

Feature B

Feature C

Monolith

Microservice Microservice

Microservices

Microservice



Scalability

Feature A

Monolith Scalability

Microservice Microservice

Microservices Scalability

Microservice

Microservice

Microservice

Microservice

Microservice

Microservice

Microservice

Microservice

Feature B Feature C

Feature A Feature B Feature C

Feature A Feature B Feature C

Waste Waste

Waste Waste

Waste



Our resources are finite!



How to use less resources 
using Java Language?



Java Module



Java Module

Source: https://jcp.org/en/jsr/detail?id=376 & https://www.oracle.com/corporate/features/understanding-java-9-modules.html

Modularity adds a higher level of aggregation above packages. The key new language element is 
the module - a uniquely named, reusable group of related packages, as well as resources and a 
module descriptor specifying.

According to JSR 376, the key goals of modularizing the Java SE platform are:

● Reliable Configuration
● Strong Encapsulation
● Greater Platform Integrity
● Scalable Java Platform
● Improved Performance

Module

Package

Class

Field
Method

https://jcp.org/en/jsr/detail?id=376
https://www.oracle.com/corporate/features/understanding-java-9-modules.html


Java Module

java.se

java.sql.rowset

java.sql

java.logging

java.naming

java.rmi

java.scripting

java.xml

java.base

java.datatransfer

java.compiler

java.desktop

JDK Modules

java.sql

java.logging java.naming

java.base

java.compiler

Application
&

Custom JRE

module-info.java

module myApp {

 exports com.tdc.poa;

 requires java.base;

 requires java.sql;

 requires java.logging;

 requires java.naming;

 requires java.compiler;

}



What are the results of using 
Java Modules?



What are the results of using Java Modules?

Java 8



What are the results of using Java Modules?

Java 9Module



Less classes, functions and 
dependencies are not 

enough!



The villain of Java’s 
resources is the Reflection



What are the results of using Reflection?

Spring is an amazing technical achievement and does so many things, but does them at Runtime.

● Reads the byte code of every bean it finds.
● Synthesizes new annotations for each annotation on each bean method, constructor, field etc. 

to support Annotation metadata.
● Builds Reflective Metadata for each bean for every method, constructor, field etc.



Is it possible to have the 
same productivity but 

without Reflection?



Yes, with Ahead Of Time 
(AOT) Compilation



Ahead Of Time (AOT) Compilation

Ahead-of-time compilation (AOT compilation) is the act of compiling a higher-level programming 
language, or an intermediate representation such as Java bytecode, into a native machine code so 
that the resulting binary file can execute natively.

Web Android
Java

Google Dagger 2



What are the results of using 
Ahead Of Time (AOT) 

Compilation?



Data from Micronaut website:

● Startup time around a second.

● All Dependency Injection, AOP and Proxy generation happens 
at compile time.

● Can be run with as little as 180mb Max Heap.

What are the results of using Ahead Of Time (AOT) Compilation?



Data from Quarkus website:

● Startup time around two seconds.

● All Dependency Injection, AOP and Proxy generation happens 
at compile time.

● Can be run with as little as 145mb Max Heap.

What are the results of using Ahead Of Time (AOT) Compilation?



Is it possible to 
improve more?



Yes, with Just In Time (JIT) 
Compilation and 



GraalVM is a universal virtual machine for running applications written in JavaScript, Python, Ruby, 
R, JVM-based languages like Java, Scala, Groovy, Kotlin, Clojure, and LLVM-based languages such 
as C and C++

● Native Image

● Embeddable

For Java Programs

For existing Java applications, GraalVM can provide benefits by running them faster, providing a 
faster Just In Time (JIT) Compilation

Source: https://www.graalvm.org/docs/why-graal/

what is?

https://www.graalvm.org/docs/why-graal/


Just In Time (JIT) compilation is a way of executing computer code that involves compilation 
during execution of a program. It runs complex optimizations to generate high-quality machine 
code

Just In Time (JIT) Compilation

System.out.println(
"Hello World");

Source code

6a 61 76 61 20 c3 
a9 20 66 6f 64 61

Byte code 01101010 
01100001 

01110110 
01100001 
00100000 
11101001 
00100000 
01100110 
01101111 
01100100 
01100001

Machine code
JIT



What are the results of using 
Just In Time (JIT) 

Compilation?



What are the results of using Just In Time (JIT) Compilation?



What are the results of using Just In Time (JIT) Compilation?



Is it possible to 
improve more?



Yes, with Native Image and 



GraalVM Native Image, currently available as an Early Adopter Technology

Native image works well when:

● Little or no runtime reflection is used.

● Limited or no dynamic classloading.

Source: https://www.graalvm.org/docs/why-graal/

Native Image

https://www.graalvm.org/docs/why-graal/


What are the results of using 
Native Image?



What are the results of using Native Image?

Source: https://www.graalvm.org/docs/why-graal/

https://www.graalvm.org/docs/why-graal/


What are the results of using Native Image?

Source: https://www.graalvm.org/docs/why-graal/

https://www.graalvm.org/docs/why-graal/


When to start using Java 
Module, AOT, JIT or Native 

Image?



When to start using Java Module, JIT or AOT?

New Application

Java Module
● Java 9

Just In Time Compilation
● GraalVM

Ahead Of Time Compilation
● Quarkus
● Micronaut

Native Image
● GraalVM

○ Early Adopter Technology

Existent Application

Java Module
● Java 9

Just In Time Compilation
● GraalVM



Java is dying?



Thanks a million!
Questions?

/larchanjo

/luram-archanjo


